

XI Всероссийский научно-практический семинар с международным участием имени Г.С. Вахромеева и Ю.А. Давыденко «СОВРЕМЕННЫЕ МЕТОДЫ ПОИСКОВ, РАЗВЕДКИ И ОХРАНЫ НЕДР»

Опытно-методические геофизические и буровые работы для изучения геометрии, состояния и свойств скрытых фундаментов

Лазурченко Антон Витальевич

Младший научный сотрудник института «Сибирская школа геонаук» e-mail: alazurchenko@geo.istu.edu

Актуальность и цель ОМР

С планируемой реконструкцией объекта строительства возникает необходимость оценки технического состояния и определения реальной несущей способности скрытых опорных элементов.

Применение прямого способа определения состояния конструкции без остановки производства является невозможным.

Цель:

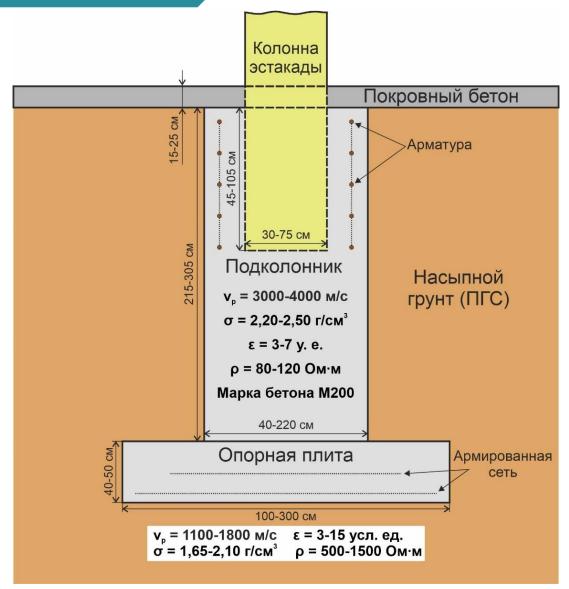
Определение конструктивных особенностей фундамента и состояние подстилающих грунтов с применением комплекса геофизических и буровых методов.

Этапы работ

1 ЭТАП

2 ЭТАП

3 ЭТАП


- ✓ Анализ проектной документации
- ✓ Фотодокументация поверхностных условий
- ✓ Анализ предыдущих работ

✓ Оценка эффективности и разработка оптимального комплекса геофизических работ

- √Контрольное
 бурение
- ✓ Лабораторные измерения керна

Объект исследования

Фотография с участка работ

Априорная петрофизическая модель опоры

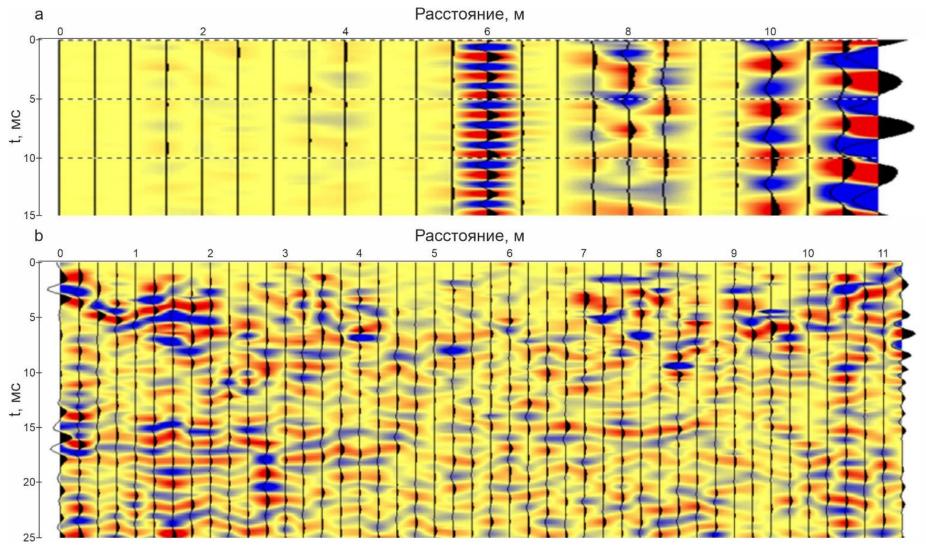
Схема измерений

Методы геофизики

Сейсморазведка

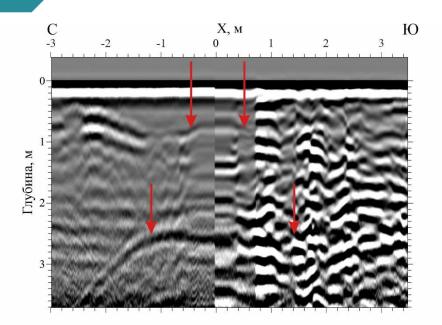
- «Лакколит 24-M4»
- Длина профиля 11,5 м
- Шаг между ПП и ПВ 0,5 м
- Количество накоплений 10-15.

Георадиолокация


- Георадар «ОКО-2»
- Антенна АБ700, АБ1700
- Развертка записи 48 и 24 соответсвенно

Электротомография

- «Скала 64К15»
- Выходное напряжение 200 В
- Импульс 200 мс, пауза 20 мс
- Установка Шлюмберже


Результат сейсморазведки

а – характер помех; b – временной разрез по линии общей средней точки профиля Пр М0

Результат ГРЛ и ЭТ по участку №1

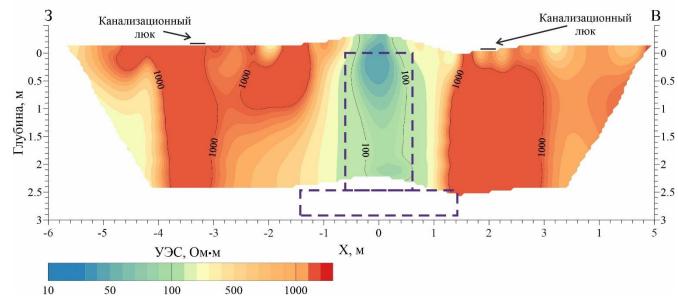
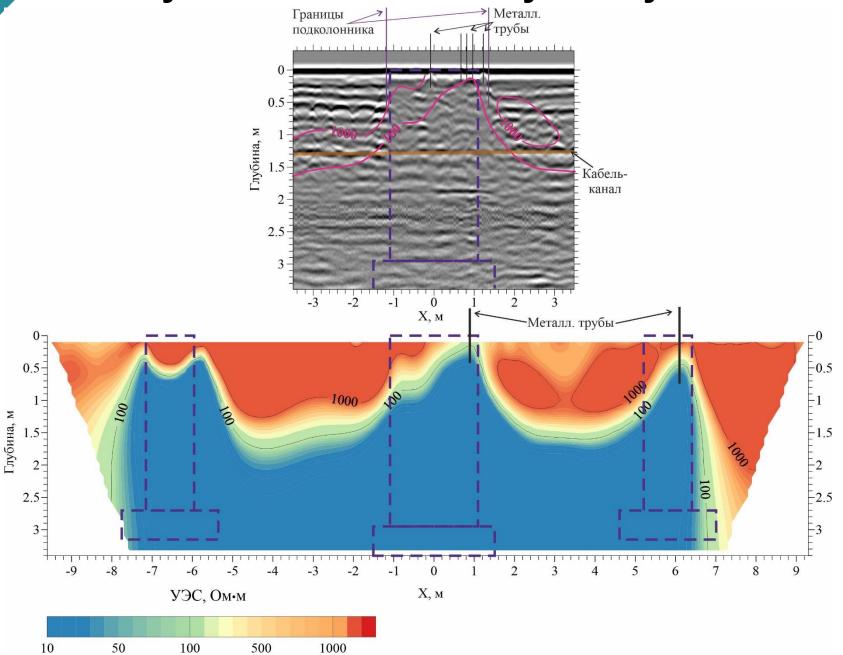
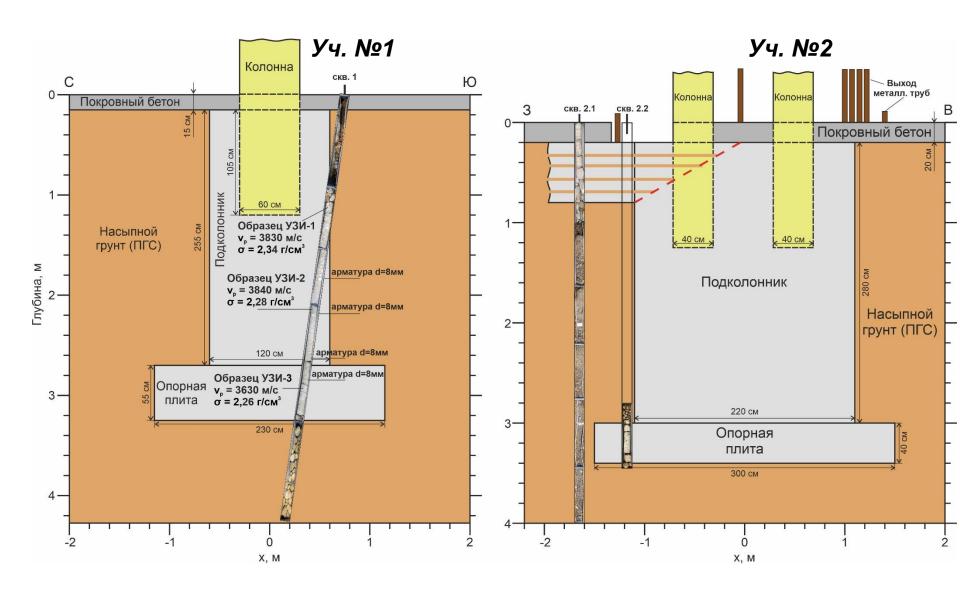
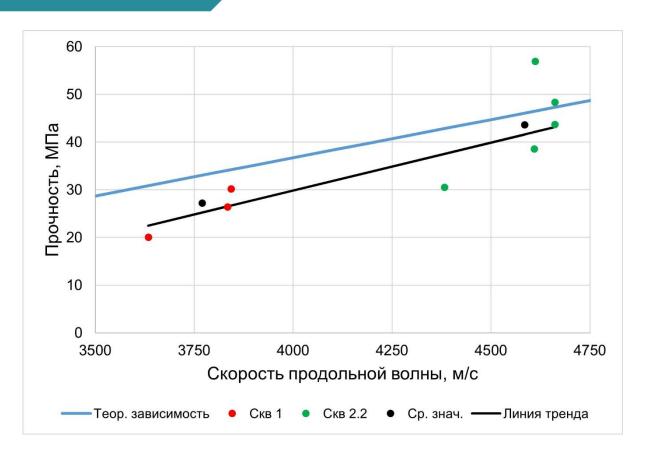



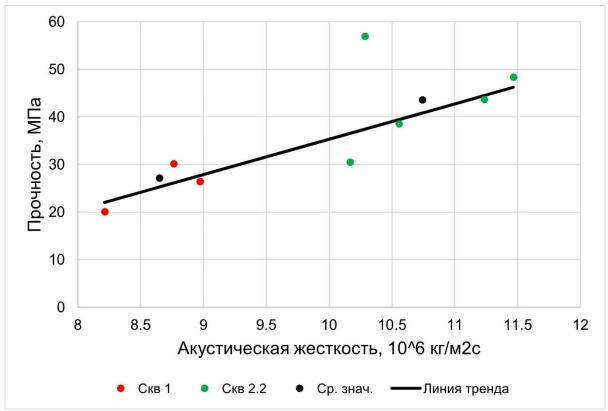
Фото заземления электродов на бетонной поверхности (фото сделано на участке №2)


Результат ГРЛ и ЭТ по участку №2

Интерпретационные схемы

- Малогабаритная установка «Опёнок» с высотой мачты 3 м.
- Бурение проведено комплексом со съемным керноприемником диаметром HQ (96 мм)
- Керн диметром 63 мм


Лабораторные измерения


Маркировка образца	Приведенная прочность, МПа	Скорость, м/с	Плотность, г/см³	Акустический импеданс, 10 ⁶ кг/м ² с	Скорость по измерителю длины свай, м/с
Скважина 1					
У3И-1	26,4	3834	2,34	8,97	
Образец 1/1	26,4	_	_	_	
Образец 2/1	21,4	_	_	_	
Образец 3/1	29	_	_	_	
У3И-2	30,2	3843	2,28	8,76	
Образец 4/1	31,4	_	_	_	
Образец 5/1	18	_	_	_	
У3И-3	20,1	3634	2,26	8,21	
Образец 6/1	22,2	_	_	_	
Среднее	27,2	3770	2,29	8,65	3330
Скважина 2.2					
Образец 2/2	38,6	4609	2,29	10,55	
Образец 3/2	48,4	4661	2,46	11,47	
Образец 4/2	57	4612	2,23	10,28	
Образец 5/2	30,5	4382	2,32	10,17	
Среднее	43,6	4585	2,34	10,64	3014

- Из керна бетона выпилены цилиндры высотой 39–65 мм, по которым определялись скоростные и плотностные характеристики бетона.
- Скорость определялась методом прозвучивания с помощью ультразвукового сейсмоскопа УК-10ПМС
- Плотность определялась методом гидростатического взвешивания.
- Прочность на сжатие осуществлялась с использованием испытательного пресса ТП-1-1500

Анализ лабораторных измерений

Зависимость прочности от скорости для класса бетона В 7-35:

$$R = 0.016V - 21.3$$
 (M Π a)

Выводы

- По данным, полученным методом ЭТ, исследуемая конструкция фундамента выделена под покровным бетоном вертикально затянутыми низкоомными аномалиями. Однако определить границы опоры с точностью до 10 см с помощью данной методики невозможно. Метод электротомографии целесообразно использовать для оценки однородности колонны, коррозийной агрессивности и влагонасыщенности среды.
- Анализ радарограмм свидетельствует о возможности определять при помощи метода ГРЛ геометрические размеры подколонников. ГРЛ целесообразно проводить в движении по выровненным поверхностям с двумя антеннами, а именно: высокочастотной (1,2–1,7 ГГц) при развертке от 24 до 48 нс (для изучения характеристик покровного бетона и расположения арматуры) и среднечастотной (700–900 МГц) при развертке от 48 до 72 нс (для изучения разреза на глубину от первых десятков сантиметров до 4 м).
- Алмазное бурение диаметром HQ (96 мм) со съемным керноприемником обеспечивает практически стопроцентный выход керна с минимальной деформацией бетонной основы со щадящим выбуриванием металлической арматуры и любого заполнителя.
- Данные петрофизических измерений свидетельствуют о наличии устойчивых корреляционных связей, что позволяет определять физико-механические свойства бетона по наземным сейсмическим наблюдениям.
- Поверхностные 2D сейсмические наблюдения из-за интенсивных помех не позволили получить данные о геометрических и скоростных характеристиках бетонных конструкций. Только работы с измерителем длины свай обеспечивают определение глубины заложения опор и оценку их состояния. При условии реализации трехкомпонентных сейсмических наблюдений «скважина/поверхность» возможно изучение геометрических размеров и динамических (модуль Юнга, коэффициент Пуассона, модуль сдвига, плотность) характеристик бетона в естественном залегании.

СПАСИБО ЗА ВНИМАНИЕ