

XI Всероссийский научно-практический семинар с международным участием имени Г.С. Вахромеева и Ю.А. Давыденко «СОВРЕМЕННЫЕ МЕТОДЫ ПОИСКОВ, РАЗВЕДКИ И ОХРАНЫ НЕДР»

КОМПЛЕКСИРОВАНИЕ СЕЙСМОРАЗВЕДКИ И ЭЛЕКТРОРАЗВЕДКИ – ЗНАЧИМОЕ ПОВЫШЕНИЕ ИНФОРМАТИВНОСТИ И ОПТИМИЗАЦИЯ ЗАТРАТ

к.т.н. Агафонов Ю.А., Немцева Д.Б., Оцимик А.А., к.г.-м.н. Мисюркеева Н.В., Селяев В.А.

Иркутск-Черноруд – 20/V'2025

СОДЕРЖАНИЕ

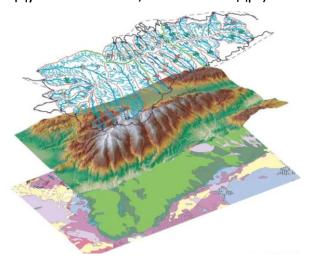
- 1. Актуальность
- 2. История комплексирования геофизических методов
- 3. «Комплексирование СРР и ЭРР» как это?
- 4. Геологические неопределенности и пути их минимизации
- 5. Методики комплексирования
- 6. Преимущества и экономическая эффективность
- 7. Трудности применения
- 8. Выводы

Актуальность

Зачастую планирование ГРР происходит в условиях неопределенности и дефицита априорной информации об исследуемом объекте. В то же время цена ошибки при выборе места заложения скважин глубокого бурения исчисляется в сотнях миллионов рублей. Очевидно, что организациинедропользователи стремятся к снижению неопределенностей и, как следствие, рисков, связанных с бурением.

Традиционно сложилось, что наиболее востребованным методом геофизики при производстве геологоразведочных работ на нефть и газ является сейсморазведка, с помощью которого довольно эффективно решаются задачи по поиску ловушек — структур, благоприятных к нефтегазонакоплению. Однако опыт показывает, что применение монометода не может гарантировать достаточную эффективность исследований, поскольку любой геофизический метод имеет определенные объективные ограничения.

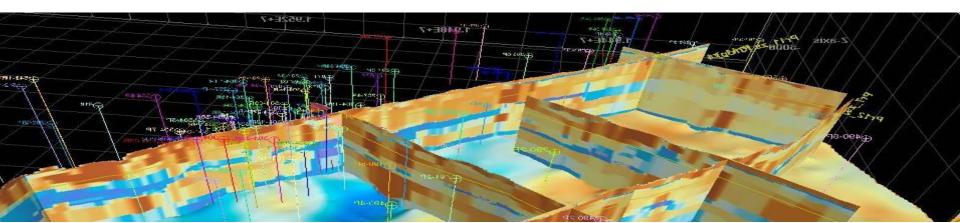
Электроразведка, как разведочный метод исследования недр, развивалась одновременно с сейсморазведкой, и также получила импульс к качественному скачку при развитии цифровых технологий. Учитывая физические основы полей разного вида, ни один из методов исследований, кроме электроразведки, не имеет предпосылок к разделению коллекторов по типу насыщения, что делает его незаменимым в нефтегазовой отрасли.


Таким образом, целесообразность **комплексирования СРР и ЭРР** не вызывает сомнений: создать структурный каркас по данным сейсморазведки и наполнить его пласты электрическими свойствами — вот формула успеха при поисках УВ.

История комплексирования геофизических методов


В конце 70-х — начале 80-х годов XX века выдающиеся Иркутские ученые Мандельбаум М.М., Вахромеев Г.С., Давыденко А.Ю., Поспеев А.В. стали основоположниками и разработчиками общих принципов комплексирования геофизических методов, что способствовало повышению эффективности ГРР.

Благодаря данным разработкам, было открыто много новых месторождений (Ковыктинское, Верхнечонское, Ярактинское, Дульсиманское, Атовское и др.).



ПОНЯТИЕ

Комплексирование геофизических методов — это сочетание и проведение в определенной последовательности различных геофизических исследований, и их совместная интерпретация в рамках единой парадигмы.

Необходимость его обусловлена неоднозначностью (многозначностью) истолкования результатов геофизических исследований по определению геологической природы, формы и геометрии изучаемых объектов.

Основная идея и цель комплексирования геофизических методов — достижение однозначного решения поставленных геологических задач, определение параметров исследуемых объектов и вмещающей среды.

ПРЕДПОСЫЛКИ КОМПЛЕКСИРОВАНИЯ ГЕОФИЗИЧЕСКИХ МЕТОДОВ:

□ ИССЛЕДОВАНИЕ ПЛОЩАДЕЙ ДЛЯ ОЦЕНКИ РЕСУРСОВ И ЗАПАСОВ КАТЕГОРИИ С3-D0

Оценка наличия крупных потенциально перспективных объектов.

МЗСБ КАК ЭФФЕКТИВНЫЙ ИНСТРУМЕНТ ИЗУЧЕНИЯ ВЕРХНЕЙ ЧАСТИ РАЗРЕЗА

Поиск водоносных горизонтов верхней части разреза для нужд водоснабжения месторождения; Прогноз скоростной модели верхней части разреза для повышения точности обработки данных МОВ ОГТ.

■ КАРТИРОВАНИЕ ГЕОЛОГИЧЕСКИХ ГРАНИЦ В МАЛОКОНТРАСТНЫХ ПО АКУСТИТЕСКИМ СВОЙСТВАМ РАЗРЕЗАХ С МЕТОДИКОЙ КОМПЛЕКСНЫХ ИССЛЕДОВАНИЙ СРР+ЭРР

Сложные геологические условия (эффузивные породы, соляные структуры и т.д.) могут ухудшать качество сейсмических (СР) данных. В таких условиях знание геоэлектрических границ в разрезе позволит повысить достоверность корреляции ОГ при обработке СР, а также снизить неопределенности, связанные с прогнозом насыщения коллекторов.

УВЕЛИЧЕНИЕ ГЛУБИННОСТИ ИССЛЕДОВАНИЙ И ИЗУЧЕНИЕ СРЕДНЕЙ ЧАСТИ РАЗРЕЗА

Новые перспективные на нефть и газ горизонты, располагающиеся в рифейских отложениях; Картирование перспективных горизонтов в интервале венд-кембрийских отложений.

НЕСТРУКТУРНЫЕ ЛОВУШКИ УГЛЕВОДОРОДОВ

Ловушки УВ не всегда приурочены к антиклинальным структурам. В Восточной Сибири большинство скоплений УВ связаны с литологическими либо тектоническими ловушками. Чтобы повысить эффективность ГРР, перспективные резервуары необходимо изучать всесторонне. Удельное электрическое сопротивление резервуара напрямую связано с его коллекторскими свойствами и типом насыщения согласно известным петрофизическим зависимостям.

СЛОЖНЫЕ УСЛОВИЯ БУРЕНИЯ – ЗОНЫ АВПД и АНПД

Для условий Сибири (в особенности, Восточной) характерно вскрытие бурением зон АВПД и АНПД. Аномальный флюидонасыщенный коллектор характеризуется высоким значением проводимости (низкими УЭС), что предопределяет возможность его картирования методами ЭР.

СТАДИЙНОСТЬ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ

ЦЕЛИ

РЕЗУЛЬТАТ

РЕЗУЛЬТАТЫ ЭЛЕКТРОРАЗВЕДКИ

ПОДСЧЕТ ЗАПАСОВ

ОБЪЕМ
ИНФОРМАЦИИ
ДЛЯ
КОМПЛЕКСИРОВАНИЯ

РЕГИОНАЛЬНЫЙ ЭТАП

- Обоснование районов для постановки поисковых работ
- Региональная модель перспективных горизонтов
- 1.Региональная
- геоэлектрическая модель разреза
- 2. Рекомендации по точкам заложения глубоких скважин
- Ресурсы: категория D1, D2

Региональные траверсы 2Д CP/ЭР. Отсутствие скважин

ПОИСКОВО-ОЦЕНОЧНЫЙ ЭТАП

- Открытие и оценка новых месторождений нефти и газа
- Карты перспективных объектов первоочередного разведочного бурения 1.Оконтуривание зоны распространения коллекторов
- коллекторов
 2. Рекомендации по точкам заложения глубоких скважин
- Ресурсы: категория D0, DL

Редкая нерегулярная сеть 2Д СР/ЭР. 1-2 параметрические либо оценочные скважины

РАЗВЕДОЧНЫЙ ЭТАП

- Определение промышленной значимости
- месторождения
 Детальная геологическая
 модель месторождения
- 1. Оценка типа насыщения коллекторов
- 2. Прогноз условий бурения глубоких скважин 3. Поиск подземных вод в ВЧР

Запасы: С1, С2

Регулярная сеть 3D СР/ЭР. Фонд разведочных скважин с ГИС, керном и петрофизикой, результатами испытаний

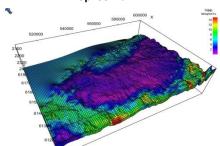
ЭКСПЛУАТАЦИОННЫЙ ЭТАП

- Получение прибыли при рациональном использовании недр Контуры эксплуатационного бурения
- 1. Прогноз условий бурения для оптимизации положения кустов скважин
- 2. Поиск подземных вод для системы ППД.
- 3. 4D мониторинговые исследования фронта заводнения

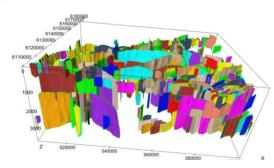
Запасы: А, В1, В2

Регулярная сеть 3D СР/ЭР.
Фонд разведочных и эксплуатационных скважин с ГИС, керном и петрофизикой.
Геологическая, геомеханическая и гидродинамическая модели

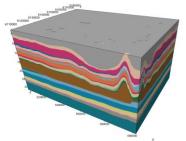
НЕОПРЕДЕЛЕННОСТИ В ГРР


В геологии нефти и газа неопределенности геологической модели могут существенно влиять на оценку запасов, проектирование разработки месторождений и принятие решений. Применение комплексирования геофизических методов помогает снизить некоторые из этих неопределенностей.

Основные неопределенности геологической модели


- Структурные неопределенности
- Форма и глубина залегания ловушек (антиклинали, разломы, стратиграфические экраны).
- Положение контактов (ВНК, ГНК).
- Геометрия разломов и их герметичность.
- Литолого-фациальные неопределенности
- Распределение коллекторов и неколлекторов.
- Изменчивость пористости и проницаемости.
- Наличие непроницаемых барьеров (глины, карбонатные цементации).
- Характер насыщения (нефть, газ, вода).
- Зональная неоднородность флюидов (изменение PVT-свойств).
- Динамические неопределенности
- Подвижность флюидов (вязкость, фазовые переходы).
- Связь между пластами (перетоки через разломы).
- Геомеханические неопределенности
- Напряженное состояние пород.
- Риски разгерметизации ловушек при разработке.

СИГМА-ГЕО


Прогнозная модель эффективных толщин пласта П1 парфеновского горизонта

Модель разрывных нарушений

Структурная модель

Прогнозная модель пористости (пласт П1)

НЕОПРЕДЕЛЕННОСТИ В ГРР

Комплексирование методов (сейсморазведка, ГИС, гравиразведка, магниторазведка, электромагнитные методы) позволяет уменьшить неопределенности за счет взаимной верификации данных:

СНИЖЕНИЕ СТРУКТУРНЫХ НЕОПРЕДЕЛЕННОСТЕЙ

Сейсморазведка + гравимагнитные методы → уточнение глубины и формы ловушек.

Сейсмика + электромагнитные методы (МТ3, 3СБ) \rightarrow выявление разломов и зон трещиноватости.

УТОЧНЕНИЕ ЛИТОЛОГИИ И СВОЙСТВ КОЛЛЕКТОРА

Сейсмическая инверсия + данные ГИС → прогноз пористости, глинистости.

Сейсмическая атрибутика + данные керна → выделение фаций.

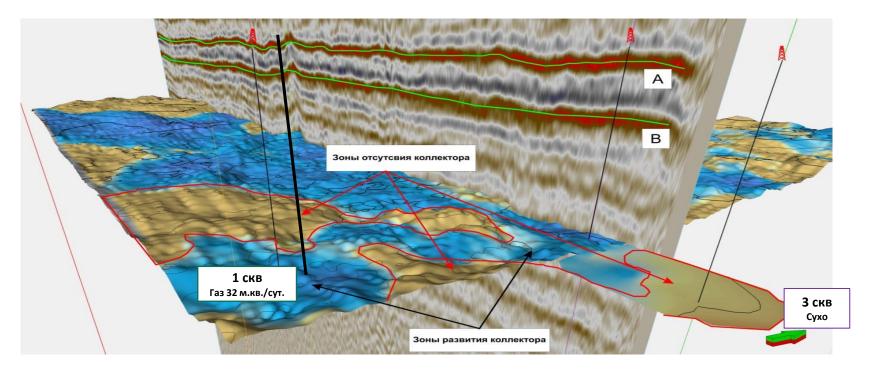
Электромагнитные методы (3СБ) + сейсмика \rightarrow обнаружение карбонатных или глинистых прослоев.

ОПРЕДЕЛЕНИЕ ХАРАКТЕРА НАСЫЩЕНИЯ

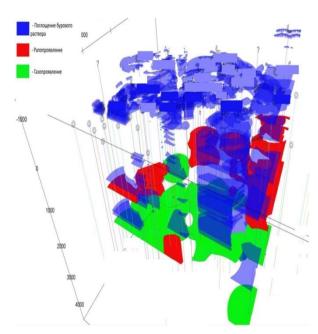
Сейсмические атрибуты (AVO, Vp/Vs) + данные ГИС \rightarrow прогноз нефте- и газонасыщенности.

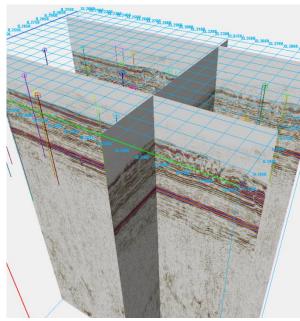
Электромагнитные методы (ЗСБ, CSEM) + сейсмика → обнаружение нефтегазовых залежей (прогноз насыщения)

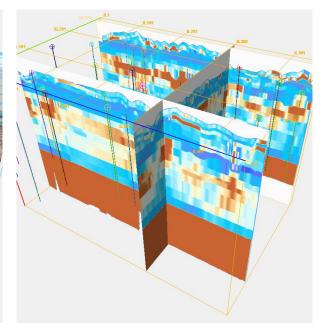
ОЦЕНКА ГЕОМЕХАНИЧЕСКИХ СВОЙСТВ


Сейсмические данные + каротаж акустических свойств + $Электромагнитные методы (3CБ <math>\rightarrow$ прогноз трещиноватости и напряжений.

Комплексирование геофизических методов особенно эффективно для снижения структурных, литологических и флюидальных неопределенностей. Однако динамические и геомеханические параметры часто требуют дополнительных данных (гидродинамические исследования, данные разработки). Оптимальный набор методов зависит от геологических условий и задач


НЕОПРЕДЕЛЕННОСТИ В ГРР-КОМПЛЕКСИРОВАНИЕ


Интегрированная 3D модель (3D 3CБ и МОВ ОГТ 3D)



• Совместный анализ и комплексирование результатов 3D 3CБ и 3D сейсморазведки позволяет повысить достоверность выявления горизонта-коллектора и снизить риски непродуктивного бурения.

БАЗОВАЯ ОСНОВА ЛОКАЛЬНОГО ПРОГНОЗА ГГУ – КОМПЛЕКСИРОВАНИЕ:

Скважины – фактические условия, керн, ГИС, верификация.

Сейсморазведка – структура разреза, разломы, зоны трещиноватости.

Электроразведка – определяет факт наличия коллектора и насыщение.

■ Переход к локальному прогнозу условий бурения стал возможен на месторождениях, изученных комплексом площадных методов сейсморазведки и электроразведки.

Возможности и сложности

- ▶ Совмещение результатов СРР и ЭРР карт и разрезов.
- ▶ Выделение зон, благоприятных по структурному фактору и по аномалиям УЭС.
- ▶ Вероятностный анализ, на основе атрибутов, поиск корреляции между различными физическими параметрами.
- ▶ Закрепление толщин геоэлектрических горизонтов с использованием сейсморазведки – и как результат – анализ УЭС в изучаемых целевых интервалах.
- Инверсия данных ЗСБ с использованием параметров геологических моделей (Кв, Кп, Нэфф).
- ▶ Совместная инверсия данных сейсморазведки и электроразведки.
- ▶ Повышение точности геологического прогноза и решение сопутствующих задач.

- ► Сложность понимания всех деталей и результатов разных геофизических методов.
- ▶ Отсутствие или недостаток компетенций в области электроразведки. Непонимание возможностей методов ЭРР.
- Искаженное представление о реальных возможностях комплексирования геофизических методов.
- ▶ Недостаток специалистов по комплексированию.
- ▶ Отсутствие программных продуктов и стандартов для полноценного комплексирования.

«Комплексирование СРР и ЭРР» - как это?

Полевые этапы ЭРР и СРР выполняются одновременно;

- Раздельные камеральные этапы;
- Без создания единой модели участка недр.

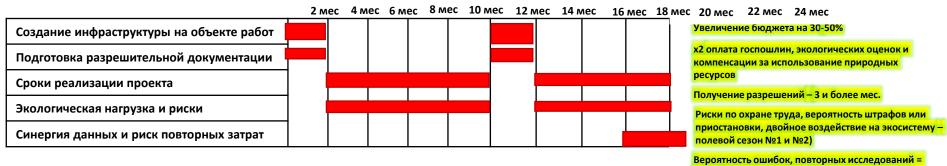
2

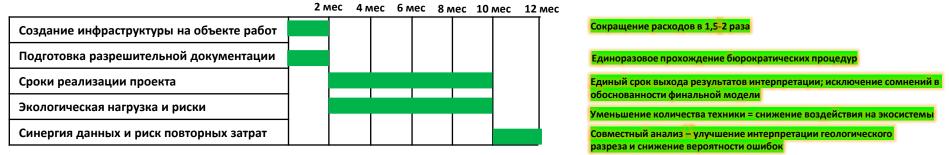
Полевые работы разнесены по времени;

- Одновременная интерпретация результатов ЭРР и CPP;
- Создание единой модели участка недр

Одновременное производство полевых этапов;

- Комплексная интерпретация результатов ЭРР и СРР;
- Создание единой модели участка недр.

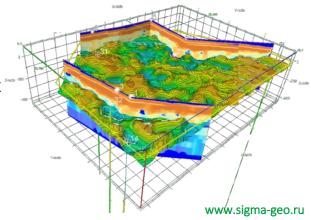

Оптимальный вариант для повышения эффективности реализации как в затратной части, так и в части итоговых результатов моделирования


СИГМА-ГЕО

«Комплексирование СРР и ЭРР» как это?

Последовательное выполнение СРР и ЭРР

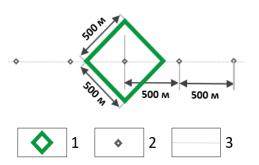
Параллельное выполнение СРР и ЭРР


новый цикл согласований = дополнительные

расходы

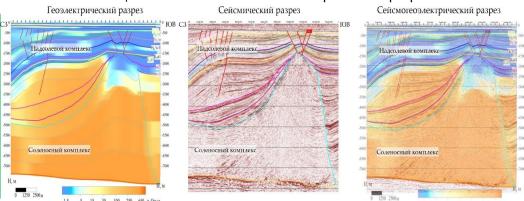
Варианты комплексирования

Методы	Интервал исследования
СРР + 2D 3CБ	интервал глубин — весь осадочный чехол;
CPP + 2D 3C5 + MT3	имеет повышенную глубинность, что особенно актуально на региональном этапе;
СРР + 3D 3CБ	площадные высокоплотные исследования, которые позволяют изучать интервалы геологического разреза, перспективные на углеводороды, а также дают информацию о среднем интервале разреза;
СРР + 3D 3CБ + м3CБ	площадные высокоплотные исследования; дополнительно детально изучается ВЧР, при этом получаемая геологическая информация является максимально полной для построения модели месторождения от поверхности до фундамента.


Предлагаемые методики уже были многократно апробированы на лицензионных участках крупнейших Российских недропользователей в различных регионах.

Применение методики комплексирования СРР и ЭРР (2D 3CБ+СРР)

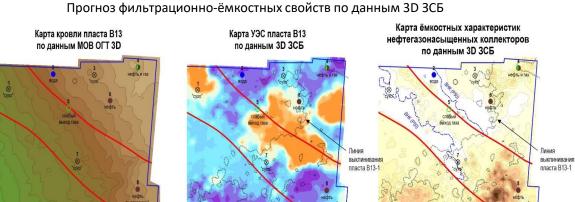
Пример единичной установки 2D 3CБ



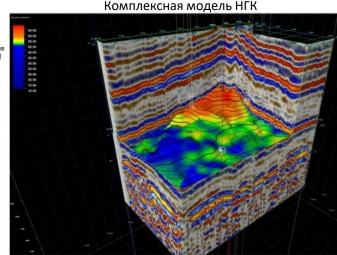
Условные обозначения: 1 - генераторная петля, 2 — приёмные петли, 3 — линия профиля

В качестве показательного примера — результаты комплексных работ (2D 3CБ с CPP), выполненные на территории Республики Калмыкия. Применение 2D 3CБ позволило повысить информативность внутри мощных соленосных структур, которые слабо дифференцируются по данным 2D МОГТ, детально изучить и обнаружить ловушки УВ в надсолевом комплексе, а также выявить зоны разуплотнения пород внутри соляных куполов, связанные с разломами.

Постановка комплекса методов 2D 3CБ с 2D МОГТ позволяет с большей надежностью оконтурить области перспектив нефтегазоносности для планирования дальнейших детализационных 3D работ и размещения точек проектных скважин. Экономический эффект заключается в снижении затрат за счёт оптимизации сети сейсморазведочных работ и минимизации рисков бурения «сухих» поисково-оценочных скважин. Возможность изучения средней части геологического разреза дополнительно позволяет прогнозировать горногеологические условия бурения.


Совмещение сейсмического и геоэлектрического разрезов

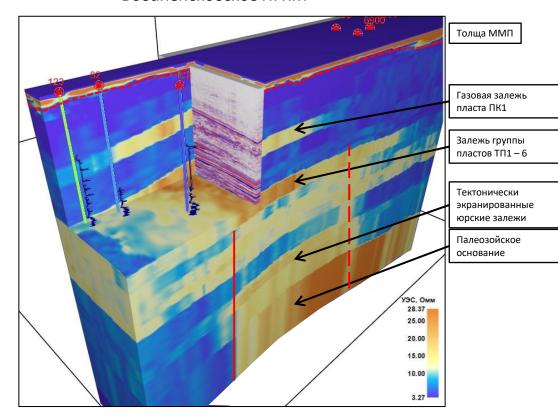
Данная методика находит свое применение на региональном и поисково-оценочном этапах ГРР.



Применение методики комплексирования СРР и ЭРР (3D 3CБ+СРР)

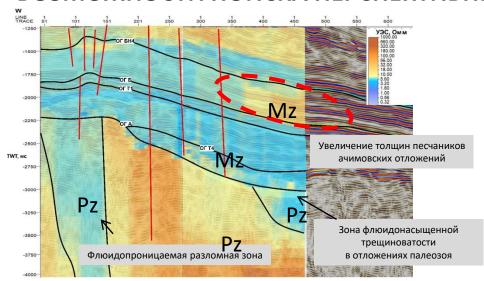
Использование высокоплотных наблюдений 3D 3CБ с применением детального структурного каркаса по данным 3D МОГТ позволяет изучить геоэлектрические свойства отдельных горизонтов-коллекторов, а с привлечением данных по скважинам — прогнозировать насыщение и емкостные свойства нефтегазонасыщенных коллекторов.

Применение структурной основы по данным МОГТ 3D в процессе интерпретации данных 3D 3CБ позволило прогнозировать насыщение и детально оконтурить газовую залежь в сеноманском нефтегазоносном комплексе (НГК) на одном из крупных газоконденсатных месторождений в Западной Сибири.

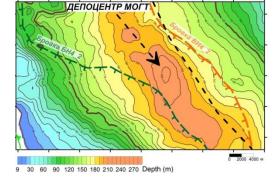

Эта методика рекомендована к применению на разведочном и эксплуатационном этапах ГРР, где требуется наибольшая детализация физико-геологической модели месторождения.

РЕШАЕМЫЕ ГЕОЛОГИЧЕСКИЕ ЗАДАЧИ С ПОМОЩЬЮ КОМПЛЕКСИРОВАНИЯ СРР И ЭРР

Применение высокоплотных площадных наблюдений **3D 3CБ в комплексе с 3D МОГТ** позволит решить следующие геологические задачи:

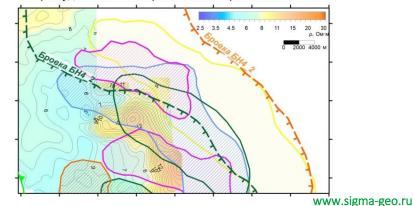

- Закартировать залежи УВ в пределах широкого стратиграфического диапазона (юрско-меловой комплекс)
- Оценить коллекторские свойства на всех этажах нефтегазоносности юрско-мелового комплекса
- При условии полноты информации оценка типа насыщения коллекторов
- Изучение отложений доюрского комплекса
- Построение комплексной геолого-геофизической модели

Бованенсковское НГКМ

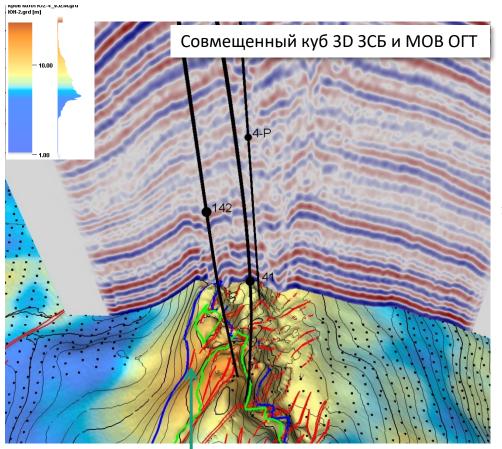


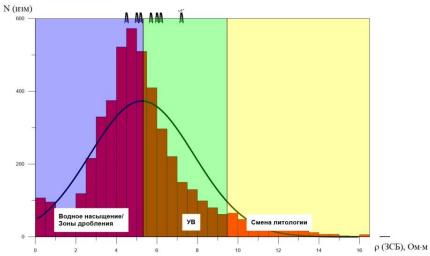
ВОЗМОЖНОСТИ ПОИСКА ПЕРСПЕКТИВНЫХ ОБЪЕКТОВ



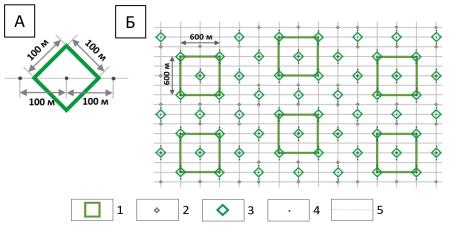

- ✓ Оценка коллекторских свойств и насыщения ачимовского, неокомского и юрского НГК
- ✓ Оценка УЭС и перспектив палеозойског оскладчатого основания

Карта общих толщин клиноформных сейсмокомплексов НБН4_2+НБН4_3





Оценка УЭС и коллекторских свойств залежей Юрского НГК

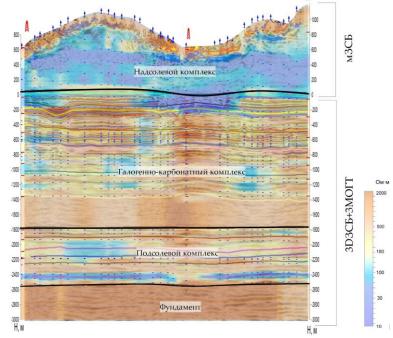


- Залежь на территории соотносится с зоной повышенных УЭС по ЗСБ
- На склонах структуры ниже ВНК УЭС понижается, что свидетельствует о смене типа флюидонасыщения.

Применение комплексирования СРР и ЭРР (3D 3CБ+м3CБ+СРР)

Пример установки м3СБ: A — единичная, квадратные приёмные петли аппроксимированы точками; Б — расположение установок по площади в комбинации с 3D 3CБ

Условные обозначения: 1 – генераторные петли 3D 3C5, 2 – приёмные петли 3D 3C5, 3 – генераторные петли м3C5, 4 – приёмные петли м3C5, 5 – линии профилей


Дополнение комплекса 3D 3CБ + 3D МОГТ малоглубинными зондированиями м3CБ позволяет детально уточнить модель месторождения, а именно - верхнюю часть разреза.

Актуальность применения технологии м3СБ связана в первую очередь с картированием резервуаров подземных вод с целью обеспечения нужд бурения и системы поддержания пластового давления (ППД).

В качестве примера рассмотрены комплексные электроразведочные работы 3D МОГТ, 3D 3CБ и м3CБ на территории уникального газоконденсатного месторождения в Восточной Сибири.

Применение методики м3СБ позволило получить детальную геоэлектрическую модель ВЧР до глубины 500 – 600 м, закартировать водоносные горизонты в отложениях ордовика и верхнего кембрия, 3D 3СБ в комплексе с 3D МОГТ позволили выявить зоны развития коллекторов, а также вертикальной трещиноватости в галогенно-карбонатном комплексе, детально изучить строение нижних горизонтов осадочного чехла, в том числе отдельных пластов-коллекторов.


Комплексный сейсмо-геоэлектрический разрез по данным м3СБ, 3DВСБ и 3D МОГТ

Трудности применения комплексирования!!!

- **Недостаток локальных нормативных документов**, которые бы позволили упростить учет комплексных геологических моделей при планировании разработки и сократили сроки проектирования.
- Дефицит подготовленных специалистов геологов и геофизиков, имеющих подготовку по анализу комплексной геофизики.
- Экономические ограничения, заключающиеся в сложности совмещения бюджетов ГРР и разработки.

Задача специалистов, ВУЗов и менеджмента сервисных компаний и недропользователей – оптимизация стратегии ГРР и разработка более эффективной дорожной карты для применения комплексной геофизики под задачи разработки.

Выводы

- 1. Комплексирование СРР и ЭРР серьезный прирост геологической информативности.
- 2. Синергия сейсморазведки и электроразведки обеспечивает такие результаты, которые недоступны ни одному другому методу или комплексу методов.
- 3. Рациональная стратегия применение к электроразведке этапности, принятой для сейсморазведочных работ: этапы изучения территории требуют соответствующей модификации (2D, 3D, 4D) и плотности наблюдений 3CБ.
- 4. Сравнивать удорожание этапа разведочной геофизики на 10% за счёт включения в комплекс электроразведки ЗСБ и монетизированные риски неуспешного поисково-разведочного и эксплуатационного бурения прерогатива владельца инвестиционного проекта, но даже ориентировочный расчёт говорит в пользу комплексирования, особенно при единовременном выполнении полевого и камерального этапа обоих методов.
- 5. Параллельное выполнение и комплексирование результатов ЭРР и СРР на нефть, газ и минеральные растворы это не только технологический прогресс, но и грамотная экономическая стратегия. В условиях непрерывного усложнения бюрократических процессов и удорожания работ/услуг/материалов такой подход становится критически важным для повышения эффективности инвестиционных проектов.

Благодарим за внимание!

Приглашаем Вас к деловому сотрудничеству!

