ООО «ГЕОТЕХНОЛОГИИ»

Информационная поддержка пилота при аэрогеофизической съемке

Гаракоев А.М.

Москва 2024

1.1. Особенности организации информационной поддержки процесса аэрогеофизической съемки

Управляющая информация – значение бокового отклонения, рассчитанного на предыдущем шаге определения координат.

1.2. Системы штатной авионики для аэрогеофизической съемки

Блоки-индикаторы системы AG-NAV

Управляющая информация – параметр XTE (Cross(X) Track Error) (значение бокового отклонения от заданной линии пути)

1.3. Аэросъемочные программно-аппаратные навигационные комплексы

1.4. Пути совершенствования систем информационной поддержки пилота

Требования к системе информационной поддержки

1 Система должна содержать нуль-индикатор, показания которого формируются на основе информации, получаемой от бортового приемника ГНСС.

2 Индикатор должен отображать специальным образом подготовленное значение, учитывающее динамику движения и скорость реакции системы «ЛА + пилот».

3 Нуль-индикатор должен работать как при движении по заданной линии съемочного маршрута, так и в режиме криволинейной траектории захода.

4 Комплекс системы сбора данных и информационной поддержки пилота должен обеспечивать решение необходимых сопутствующих задач съемки.

5 Программная организация комплекса должна позволять работать не только на основном бортовом компьютере, но и на локальной сети, составленной из компьютеров, планшетов, смартфонов и т. п.

Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал Уравнения движения

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал 2.1. Уравнения движения

$$T_2 \sim 1,0 \text{ c}$$

Характерное значение угловой скорости:

$$\omega^* = \frac{V^*}{R^*} = \frac{1}{T_1} \Rightarrow \omega^* = \frac{1}{14} \sim 0.07$$

а угловое ускорение:

$$U^* = \frac{\omega^*}{T_2} = \frac{1}{T_1 T_2} \implies U^* = \frac{1}{1 \cdot 14} \sim 0,07$$

Величина U отлична от нуля в (2.1) в моменты изменения угловой скорости, т.е на интервалах времени $\Delta T \leq T_2$. Введем безразмерные величины:

$$t = \frac{T}{T^*}, x = \frac{x_1}{R^*}, y = \frac{x_2}{x_2^*} w = \frac{\omega}{\omega^*}, u = \frac{U}{U^*}$$

где $T^* = T_1$ или T_2
Cистема (2.3) в «медленном» $T^* = T_1$ времени
 $\begin{bmatrix} \dot{x} = \cos \varphi, \\ \dot{y} = \sin \varphi, (2.4) \\ \dot{\varphi} = w, \\ \dot{\psi} = 0. \end{bmatrix}$
 $\dot{\psi} = \frac{T^*}{T_1} w,$
 $\dot{\psi} = \frac{T^*}{T_2} u.$

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал 2.2. Задача быстродействия

$$\begin{cases} \dot{x}_1 = V \cos \varphi, \\ \dot{x}_2 = V \sin \varphi, (2.5) \\ \dot{\varphi} = \omega, \end{cases}$$

Замена переменных:

$$\begin{cases} y_1 = x_1 \cos \varphi_0 + x_2 \sin \varphi_0 - x_{10}, \\ y_2 = -x_1 \sin \varphi_0 + x_2 \cos \varphi_0 - x_{20}, (2.6) \\ y_3 = \varphi - \varphi_0, \end{cases}$$

$$\begin{cases} \dot{y}_1 = V \cos y_3, \\ \dot{y}_2 = V \sin y_3, \\ \dot{y}_3 = \omega. \end{cases}$$
 (2.7)

Функционал качества:

$$J = \int_{t_0}^{t_f} 1 dt \rightarrow \min(2.8)$$

Задача быстродействия для режима «заход»

$$\begin{cases} \dot{y}_1 = V \cos y_3, \\ \dot{y}_2 = V \sin y_3, \\ \dot{y}_3 = \omega, \end{cases} \begin{cases} y_1(0) = y_1^0, \\ y_2(0) = y_2^0, \\ y_3(0) = y_3^0, \end{cases} \begin{cases} y_1(t_f) = 0, \\ y_2(t_f) = 0, (2.9) \\ y_3(t_f) = 0. \end{cases}$$

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал 2.2. Задача быстродействия

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал

2.3. Алгоритм управления нуль-индикатором пилота

$$\omega_i = \frac{\varphi_i - \varphi_{i-1}}{\Delta t}, (2.18)$$

$$\omega_{i,K}^{*} = \omega_{i}^{*} (V K \Delta t), (2.19)$$

 $u_i = \omega_i - \omega_{i,K}^+.(2.20)$

$$\overline{u}_{i} = \frac{1}{N} \sum_{j=i-N}^{i} (\omega_{j} - \omega_{j,K}^{*}) = \frac{1}{N} \Delta \omega_{i} + \frac{1}{N} \sum_{j=i-N}^{i-1} \Delta \omega_{j}, (2.21)$$

Алгоритм 1

- 1. Назначается радиус разворота $R = R_{min}$.
- 2. Определяется программная траектория для $\omega_{\text{max}} = V/R$.
- 3. Формируется сигнал нуль-индикатора согласно формуле (2.21) с учетом масштабного коэффициента

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал <u>2.4. Выбор допустимой</u> траектории в режиме «сближение»

Алгоритм 2

Пусть *D_{max}* – максимально допустимое боковое отклонение ЛА от заданной линии пути.

- 1 Если $y_2^0 > D_{max}$ или $y_2^0 < -D_{max}$, то $R = R_{min}$ и переход к пункту 6 (при большом отклонении выполняем максимально быстрое сближение с заданной линией).
- 2 Если y₃⁰ > 0, то

$$\widetilde{R} = \frac{(D_{max} - y_2^0)}{1 - \cos y_3^0} (2.22)$$

(вычисляется радиус окружности, проходящей через L_a так, что направление вектора скорости задает касательную в этой точке, и касающейся прямой $y_2^0 = D_{max}$).

3 Иначе: если $y_3^0 < 0$, то

$$\widetilde{R} = \frac{(y_2^0 - D_{max})}{1 - \cos y_3^0} (2.23)$$

(вычисляется радиус окружности, проходящей через L_a так, что направление вектора скорости задает касательную в этой точке, и касающейся прямой $y_2^0 = D_{max}$).

2. Алгоритмы информационной поддержки пилота при аэрогеофизической съемке. Горизонтальный канал 2.4. Выбор допустимой траектории в режиме «сближение»

Алгоритм 2

- 4 Иначе, если $y_3^0 = 0$, то $\tilde{R} = 10 R_{min}$ (если радиус может быть сколь угодно большим, он ограничивается величиной, в 10 раз больше заданной).
- 5 Если $\widetilde{R} > 10 R_{min}$, $\widetilde{R} = 10 R_{min}$.
- 6 Если $\widetilde{R} < R_{min}, R = R_{min},$ иначе $R = \widetilde{R}$.
- 7 Определяется программная траектория для $\omega_{max} = V/R$.
- 8 Формируется сигнал нуль-индикатора согласно формуле (2.21) с учетом коэффициента шкалы *S*.

Фрагмент расчетной траектории для режима «Сближение»

3. Настройка параметров системы информационной поддержки навигационных режимов аэросъемочного полета

 \rightarrow XTE(t)

3.1. Теоретические предпосылки автоматизации настройки параметров синтеза управляющей информации

Информационная система в структуре аэросъемочного комплекса

3. Настройка параметров системы информационной поддержки навигационных режимов аэросъемочного полета 3.2. Определение параметров системы «летательный аппарат + пилот»

Передаточная функция имеет вид:

$$H(s) = \frac{b_0 s + b_1}{s^2 + a_1 s + a_2},$$

 $\ddot{x} + a_1 \dot{x} + a_2 x = b_0 \dot{y} + b_1 y$ (3.1)
у – вход,
х – выход,
коэффициенты a_1, a_2, b_0, b_1 неизвестны.
 $S = 20$ рад⁻¹ для $\underline{y} = S \overline{u}$

 $\ddot{x} + a_1 \dot{x} + a_2 x = b_1$ (3.5)

Решение уравнения для (3.5) определяет постоянную времени динамики ЛА:

$$\frac{1}{T_{r1,2}} = \frac{a_1 \mp \sqrt{a_1^2 - 4a_2}}{2} \quad (3.6)$$

Выбирается корень отвечающий значению ~ 1 с.

В процессе выполнения режима «заход» есть возможность наблюдать оценку скорости изменения путевого угла (3.8)

$$\overline{\omega}_{max} = \frac{1}{N\Delta t} \sum_{i=1}^{N} \varphi_i - \varphi_{i-1} = \frac{1}{N\Delta t} \varphi_N - \varphi_0 \quad (3.8)$$

$$K = \frac{T_r}{\Delta t} \quad (3.7)$$

параметр *К* для настройки Алгоритмов 1, 2.

3. Настройка параметров системы информационной поддержки навигационных режимов аэросъемочного полета 3.3. Обработка экспериментальных данных

Данные ГНСС-позиционирования записаны в темпе 10 измерений в секунду

3. Настройка параметров системы информационной поддержки навигационных режимов аэросъемочного полета 3.3. Обработка экспериментальных данных

Значения входных (у) и выходных (х) данных

Вертолет Eurocopter AS350. Соответствие реальных и модельных данных 78,7%

В соответствии с (3.8) определена оценка реальной скорости приращения путевого угла.

 $\omega_{max} = 0.408 - As350$ Eurocopter

Время реакции системы «ЛА + пилот» и коэффициент *К* алгоритма управления индикатором

$$T_r = 2.5 \,\mathrm{c}, \ K = 25 - \mathrm{As350} \,\mathrm{Eurocopter}(T_{r2} = 20 \,\mathrm{c})$$

3. Настройка параметров системы информационной поддержки навигационных режимов аэросъемочного полета 3.3. Обработка экспериментальных данных

4. Программный комплекс информационной поддержки навигационных режимов аэросъемочного полета NAVDAT 4.1. Структура программного комплекса

4. Программный комплекс информационной поддержки навигационных режимов аэросъемочного полета NAVDAT 4.2. Навигационный план полетного задания

Формализованное описание навигационного плана

Типы записей файла полетного задания (*.fpl)

LINE L_1= (CONTROL,-13005396,-15000000,50), (CONTROL,-234567890,-3210099,50), (CONTROL,12345396,-12340210,50); Список точек съемочного маршрута

4. Программный комплекс информационной поддержки навигационных режимов аэросъемочного полета NAVDAT 4.2. Навигационный план полетного задания

Name	#	Track	Dist	Time	CurTrack	CurDist	CurTime	
🕂 🛕 dacha	4							
🗉 📥 mifi								
🛨 🔔 UNIVER								
🕂 📥 OSTANK 👘								
🔸 🔔 SHABOL 👘								
🛨 🔔 tepistan								
🛛 + 📥 control	2	180.18	11.12	00:00:00				
🛛 + 📥 L_110		-0.00	4.13	00:00:00				
🛛 + 📥 L_109	2	180.12	4.13	00:00:00				
🕂 🛨 📥 L_108	2	179.88	4.13	00:00:00				
🛛 + 📥 L_107	2	359.88	4.13	00:00:00				
+ 📥 L_106	2	179.88	4.13	00:00:00				
🛛 + 📥 L_105	2	359.88	4.13	00:00:00				
	~	4 70.00	7.04					للندر

Окно панели полетного задания

4. Программный комплекс информационной поддержки навигационных режимов аэросъемочного полета NAVDAT 4.2. Навигационный план полетного задания

Индикатор пилота

4. Программный комплекс информационной поддержки навигационных режимов аэросъемочного полета NAVDAT 4.3. Результаты практического применения и оценка эффективности методов и алгоритмов информационной поддержки

выводы

- 1) Сформулированы требования к структуре системы информационной поддержки пилота при аэрогеофизической съемке.
- 2) Разработаны алгоритмы информационной поддержки пилота при управлении движением в горизонтальной плоскости, разработанные на основе принципа максимума Понтрягина с использованием траекторий Дубинса.
- Предложен алгоритм формирования допустимых программных траекторий в режиме сближения с текущим маршрутом, для которых удовлетворяются требования технического задания в части точности следования заданной линии пути.
- 4) Предложен способ идентификации постоянной времени маневра ЛА и времени реакции пилота основных параметров, необходимых для настройки алгоритма управления нуль-индикатором пилота, на основе которого разработан алгоритм настройки.
- 5) Разработан программный комплекс информационной поддержки пилота на режимах аэрогеофизической съемки для всех видов самолетов и вертолетов, выполняющих эти работы, который позволяет:
 - обеспечить среднеквадратичное значение ошибки бокового уклонения на дистанции полет порядка 1000 пог. км. На уровне 2 – 3 м;
 - обеспечить предельно низкие потери летного времени в среднем 1 1,5 минуты в режимах захода на маршрут;