

Применение технологий: экспериментальные данные и результаты моделирования

Пятый юбилейный всероссийский научнопрактический семинар с международным участием имени Г.С. Вахромеева

«СОВРЕМЕННЫЕ МЕТОДЫ ПОИСКОВ В РУДНОЙ И НЕФТЯНОЙ ГЕОЛОГОРАЗВЕДКЕ» Давыденко Юрий Александрович, к.т.н., доцент ИРНИТУ, генеральный директор ООО «Гелиос» <u>davidenkoya@gmail.com</u> +7-914-871-98-42 <u>info@gelios-geo.com</u> +7 (3952) 980-404 Россия, 664074, г. Иркутск,

ул. Лермонтова, д. 83а, оф. 207

Баяр 2018

Проблема

Углубление кровли разведанных месторождений цветных металлов в мире 1900 – 2013 гг

Глубина до кровли, м.

- Стоимость ГРР нелинейно увеличивается с глубиной залегания месторождения
- Необходим метод, позволяющий снизить стоимость поисков месторождений

Предлагаемое решение

Месторождениям рудных полезных ископаемых сопутствует сульфидная минерализация

Универсальный способ обнаружить сульфидам по аномалиями вызванной поляризации

Отличие от конкурентов:

помимо фиксации процесса ВП измеряем ранние времена спада (процессы электромагнитной индукции), что дает огромный прирост информации о разрезе и разрешающую способность на глубины **до 1 км**.

АППАРАТНО-ПРОГРАММНЫЙ ЭЛЕКТРОРАЗВЕДОЧНЫЙ КОМПЛЕКС

Современный аппаратно-программный электроразведодчный комплекс с заземленными источниками и приемниками

Сохранение полученных данных без сжатия

Регистрация сигнала

Подача прямоугольных импульсов в геологическую среду

Получение измененных электрического сигнала из геологической среды

Критерии поиска

Рудные полезные ископаемые

Сульфиды

Аномальные значения ВП, повышенная проводимость Кимберлитовые трубки

Сопутствующие сульфиды

Аномальные значения ВП

Проведенные работы

Рудные полезные ископаемые

АЛТАЙСКИЙ КРАЙ Новокузнецовская площадь – 418 пог. км с шагом 50 м

ГОРНЫЙ АЛТАЙ Ишинская площадь – 80 пог. км с шагом 25 м

Трубки взрыва

РЕСПУБЛИКА САХА (ЯКУТИЯ) Участок «Буардахский» - 21 пог. км с шагом 25 м

Участок «Сюльдюкар» – 21 пог. км с шагом 25 м

Участок «Полярный» – 320 пог. м с шагом 0.5 м

Участок «Байтахский» – 19 пог. км с шагом 25 м

Детальные работы по изучению ВП на трубках «Ленинградская» и «Долгожданная»

Поиск полиметаллических руд на Алтае, Змеиногорский район, вблизи границы с Казахстаном

контур участка Новокузнецовский

Заказчик: АО «Горно-Алтайская экспедиция» (ОАО «Росгеология»)

Результат 3D моделирования поляризуемости по данным ЭМЗ-ВП в программном комплексе ITEM-IP

3D модель горизонтально-слоистой вмещающей среды с распределением поляризующихся объектов, полученных в результате процедуры инверсии

Карта аномального комплексного показателя вызванной поляризации и кажущегося УЭС

Рисунок 3 Карта аномального комплексного показателя вызванной поляризации и кажущегося сопротивления с аномалиями ВП

с аномалиями ВП

Давыдовского участка

Геолого-поисковая карта Давыдовского участка с аномалиями ВП

Карты поляризуемости по результатам 3D инверсии на некоторых глубинах

поисковые скважины с пиритом

Ишинская площадь.

Сопоставление геоэлектрического разреза по результатам 3D инверсии с данными бурения

Изучение поляризационных свойств кимберлитовых тел Трубки «Долгожданная» и «Ленинградская»

Пример сходимости модельной и наблюденной кривых на трубке «Ленинградская»

Модель геоэлектрического разреза на трубке «Ленинградская» ПР 5, ПК 16

N⁰	УЭС,	Поляризуемость,	Время релаксации,	Мощность,
слоя	0M*M	%	сек	М
1	63	60	0.00001	5
2	150	80	0.0001	73
3	715	42	0.08	∞

Пример сходимости модельной и наблюденной кривых вмещающей среды профиля №10

Модель геоэлектрического разреза вмещающей среды ПР 10, ПК 19

N⁰	УЭС,	Поляризуемость,	Время релаксации,	Мощность,
слоя	OM*M	%	сек	Μ
1	262	14	0.005	2.5
2	1115	9.5	0.0004	44
3	1996	12	0.07	∞

Полярный

Карта УЭС трубки «Ленинградская» на глубине 0.1-1м по 3D инверсии

Карта поляризуемости трубки «Ленинградская» на глубине 0.1-1м по 3D инверсии

Карта УЭС трубки «Ленинградская» на глубине 1-5м по 3D инверсии

Карта поляризуемости трубки «Ленинградская» на глубине 1-5м по 3D инверсии

Разрез профиля 9 по УЭС трубки «Ленинградская» 3D инверсии

Разрез профиля 9 по поляризуемости трубки «Ленинградская» 3D инверсии

Разрезы профиля 10 вмещающей среды по р, η и т 3D инверсии

Участок «Байтахский»

Оценка чувствительности измерительной системы

Решение прямой задачи для рудного тела жильного типа

1. Объект перпендикулярен АВ и MN

2. Объект параллелен АВ и MN

Целевой объект

ΔΧ, ΔΥ, ΔΖ, m	Rho, Omm	Eta, %	Tau, s
20x200x200	20	80	100

3 положения объекта Глубина до кровли: 40, 140 и 240 м

Среда

Layers		Rho, Omm	Eta, %	Tau, s
	1	50	5	0.01
	2	1200	10	0.01
	3	10000	5	0.01

Ток в линии 4 А

Расстояние между пикетами – 50 м профилями – 100 м

АВ – 3000 м Участок 1600х1200 м²

Кривые зондирования

Пример кривых зондирования с точки (Х = 200м ; Y = 200м)

1. Объект перпендикулярен АВ и ММ

Постоянный ток

Поле становления

Порог чувствительности 0.01 мВ

Разрез по профилю 9 (Ү = 200 м)

Индукция

Порог чувствительности 0.01 мВ

Разрез по профилю 9 (Y = 200 м)

Разрез по профилю 9 (У = 200 м)

ВΠ

Аномальное ΔU

Глубина до кровли целевого объекта

Имеется чувствительность по ВП для целевого объекта с глубиной кровли 40 м с глубиной кровли 140, 240 м чувствительности нет

2. Объект параллелен АВ и ММ

Постоянный ток

Кажущееся УЭС

Поле становления

Порог чувствительности 0.01 мВ

Аномальное ∆U

Индукция

Аномальное ΔU

Порог чувствительности 0.01 мВ

Порог чувствительности 0.01 мВ

Разрез по профилю 9 (У = 200 м)

ВΠ

Глубина до кровли целевого объекта

Имеется чувствительность по ВП для целевого объекта с глубиной кровли 40 и 140 м с глубиной кровли 240 м чувствительности нет

Выводы по моделированию

- В случае параллельного расположения рудного объекта жильного типа относительно измерительной системы AB-MN объект выделяется на глубине залегания кровли в 240м по индукции и 140м по BП
- В случае перпендикулярного расположения рудного объекта жильного типа относительно измерительной системы AB-MN объект надежно выделяется на глубине залегания кровли в 140м по индукции и 40м по ВП
- В случае параллельного расположения рудного объекта жильного типа относительно измерительной системы AB-MN примерно на порядок увеличивается аномальный вклад ВП и индукции относительно их перпендикулярного расположения.

Рекомендация

 Дополнительно использовать ортогональное расположение генераторного диполя АВ для выделения объектов жильного типа